
CPF Data Management System
1 | | | | | Requirements 1.1 Workflow Processing Requirements 1.1.1 Workflows 1.1.2 Workflow Execution 1.1.3 Workflow Events 1.1.4 Workflow

 | | | | | Tasks 1.1.5 Workflow Task Support Library 1.1.6 Workflow Metadata 1.1.7 Webserver 1.2 Inter-calibration Requirements 1.2.1 Inter-calibrat
 | | | | | ion Workflows 1.2.2 Workflow Tasks 1.2.2.1 CPF IC Scheduler 1.2.2.2 ISS Modeling 1.2.2.3 MIIC IC Data Retrieval 1.2.2.4 CPF IC

 | | | | | Schedule Submission 2 Architecture 2.1 CPF Workflow Server 2.1.1 Workflow Manager 2.1.1.1 Task Execution Abstractions 2.1.1.2 Workfl
 | | | | | | ow Repository 2.2 CPF Monitors 2.2.1 Types of monitors 2.3 CPF Data Servers 2.3.1 Workflow Server 2.3.2 Science Job Server 2.3.2.1 Fl

 | | | at-file Repository 2.3.2.2 Software Container Repository 2.3.3 History Server 2.4 CPF Task Support Library

Requirements

Workflow Processing Requirements

The intent of workflow processing is to automate a sequence of steps (tasks) that are required to run in response to an input condition (event). In
the domain of CPF, for example, performing inter-calibration tasks for an event in response to the arrival of the required CPF L1 and
CERES/VIIRS input files.

A good workflow processing system is general-purpose and can support many different use-cases. We require a general tool so that all current
and future CPF processing can be supported with minimal code changes.

Concrete CPF inter-calibration use-cases. These are designed with the aid of subject matter experts.

Workflows

Workflows consist of multiple tasks (i.e. science jobs) chained together.
Workflows (and associated objects) must be represented as an XML file for simple viewing and editing
Workflows (and associated objects) must be stored in a repository to facilitate software-based editing and viewing

Workflow Execution

Incoming events trigger the start of workflows
Workflow tasks may run sequentially or in parallel.
Workflow tasks must execute on a Univa Grid Engine (UGE) cluster
Workflow tasks must not over-consume resources in the UGE cluster.

Using UGE load balancing and/or load monitoring features.
Instances of executing workflows must be defined in a repository, including the current state of all workflow tasks

Workflow Events

Arrival of new data file(s) can source new events
Files can be discovered by scanning folders
Files can be discovered by Email notification of an archive system

The calendar can source new events
Calendar events can be defined in a CRON schedule

Human operators can source new events

Workflow Tasks

Tasks have preconditions and postconditions.
Preconditions must be true before a task may run
Postconditions must be true after a task has run

Task preconditions must include:
Input files exist and are valid
Metadata exists and is valid

Task postconditions must include:
Output files exist and are valid
Metadata exists and is valid
Valid exit codes

Tasks must be stored in a repository and include relevant metadata:
Description
Preconditions & postconditions
Metadata including options and default values

Logging configuration
Version information

Workflow tasks may be stand-alone executables or Java objects that implement an interface.
Workflow tasks may run inside a software container (i.e. docker) to help simplify deployment
Workflow tasks may obtain additional run-time support via a Task Support Library

Workflow Task Support Library

Workflow tasks written in Java or any language with “C” binding (i.e. most languages) may utilize a Task support library
High priority language bindings to include C++ and Fortran
Lower priority language bindings to include Python and Matlab

The task support library is separate from HDF APIs
Tasks written in Java may use the HDF Object package or the HDF4/HDF5 JNI libraries to read/write HDF4 and HDF5 files.
Tasks written other languages may also use HDF5 and HDF4 libraries (as available).

Task support library must provide centralized logging.
Log entries are task & time stamped and collected in a central repository for further filtering and viewing
Logging to include standard levels (TRACE, DEBUG, INFO, WARNING, ERROR) and hierarchical loggers.
Logging must be asynchronous and have a minimal impact on performance

Task support library may include other routines to facilitate or standardize common IC tasks (TBD)
Task support library must provide read/write access to workflow metadata

Workflow Metadata

Workflow metadata may provide additional context to an executing workflow and its tasks such as:
date/time stamps
user options
other information that is either inconvenient or inappropriate to store in data files.

Metadata may take the general form “key=value”.

Webserver

CPF must employ a web server to support validation & operations
High priority: workflow instance monitoring

Show state of workflow execution
Show workflow and/or task errors
View logs and filter by workflow and task

High priority: workflow instance control
Pause and resume workflow execution ()TBD, may not be realistic for CPF
Stop all workflow execution and save current state to repository ()TBD, may not be realistic for CPF
Reset all workflows (i.e. restart from the beginning) ()TBD, not realistic be for CPF
Test workflows

High priority: monitoring events
Ability to see available event sources (file scanner, etc) and recent activities

Low priority: workflow visualization and configuration
Graphical representation of workflow and state of workflow tasks
Ability to edit workflow and workflow tasks
Ability to edit workflow event sources

Low priority: performance & UGE integration
Link to or incorporate UGE cluster web pages
Show task performance statistics

Inter-calibration Requirements

Inter-calibration Workflows

The following analysis diagram helps us understand the anticipated inter-calibration workflows:

Circles represent workflow tasks and rectangles represent workflow data.
Orange shapes are tasks/data belonging to LASP and not part of this system.
Red rectangles represent archived data products (archive submission tasks are not currently shown)
Rectangles flowing into a task are task preconditions
Rectangles flowing out of a task are task postconditions and can be modeled as data files stored on the cluster or possibly as workflow
metadata.

Events are not depicted in this diagram. Anticipated events are:

A new CPF L1 file arrives from LASP
A new CERES SSF data file is discovered
A new VIIRS L1 or L2 Cloud/Aerosol data file is discovered

Workflow Tasks

The following concrete workflow tasks are required.

CPF IC Scheduler

Generates CPF inter-calibration Schedule for CERES/VIIRS vs. ISS
TBD event prediction requirements, which may be different that standard MIIC LEO/LEO
TBD if this prediction is done by MIIC or other software

ISS Modeling

Alters CPF IC Schedule to comply with ISS
TBD ISS Modeling requirements (ISS schedule, orbit changes, instrument occlusion, etc)
TBD software language (may include STK simulation)

MIIC IC Data Retrieval

Must locate and retrieve CERES and VIIRS data required for inter-calibration tasks
(TBD) MIIC IC Events may not be predicted, but instead provided a-priori to match duration of CPF L1 files
Must support these CERES/VIIRS data collections:

CERES SSF
VIIRS L1
VIIRS L2 Cloud & Aerosol

Must accept list of required data variables
Must stage data to cluster to be used as science job input

CPF IC Schedule Submission

Task to send CLARREO IC Schedule to LASP

Architecture

CPF Workflow Server

The workflow server is a general-purpose tool to execute pre-defined workflows in response to incoming events. We will re-use an existing
open-source workflow system that meets our requirements, as opposed to writing this component from scratch. CPF inter-calibration workflows
and events are defined using the data model of the workflow system. This will both save development time and provide a more robust system.

The workflow server will be a separate server process that deploys to same node as the UGE Master Daemon and UGE REST Server. Running
on the cluster head node provides better performance and safety since the UGE job queue will only be accessed locally. The workflow server will
run in its own Java VM, isolating it from other non-critical components.

As it is a standalone server it must provide a remote interface. Clients use this interface to send events, retrieve workflow status, and to control
workflows (i.e. start, stop, pause, etc).

Workflow Manager

The primary component of the workflow server is the workflow manager, which loads workflow definitions from some repository, process incoming
events, and of course manages the execution of all workflows and their constituent tasks. Its main job is to kick off workflows in response to
incoming events. It also executes the individual tasks comprising a workflow as directed, checks task preconditions and postconditions, handles
errors, processes operator inputs, etc.

Task Execution Abstractions

Because workflow tasks must run on compute resources, the workflow manager provides abstractions for the and of aexecution management
task. A represents a resource that can execute a task. A represents a running task which may be queried asWorkflow Engine Workflow Instance
to its status, or killed. Since our implementation uses UGE we need a and a as shown in theUGE Workflow Engine UGE Workflow Instance
architecture diagram.

Workflow Repository

Objects comprising a workflow will be stored in an external repository and loaded on demand. The workflow data model is of course determined
by the workflow software we use. We use their workflow data model to implement the required CPF workflows. As we gain experience we may
find opportunities to modify or adapt this model to better suit our needs.

The workflow manager accesses the workflow repository through an interface shown in the architecture diagram as the Workflow Repository
. This will allows us to replace or update the workflow repository when necessary. Initially, our workflow repository will simply be aAdapter

collection of XML files. Later, we may integrate database storage of workflows to facilitate web-based workflow tools.

CPF Monitors

Monitors are stand-alone daemons that check for meaningful conditions (e.g. the availability of a new CPF L1 file), and then send the appropriate
event to the Workflow Server. They should be separate from the workflow server since performing this activity is orthogonal to workflow
processing. Monitor daemons may also need to be deployed to a different host than that running the workflow server. For example, we may need
to scan for a PAN (product availability notice) files that are deposited to an FTP server outside the LaRC firewall.

Having separate monitor daemon(s) introduces a new point of failure to the system. There the CPF Monitor will send periodic heartbeat events to
the Workflow Server. This allows our system to know which monitors are alive and to help diagnose problems.

Types of monitors

We will build a file-based monitor that will simply scan a folder for files matching a regular expression. These files are commonly used to signal
the presence of new data available for inter-calibration workflows.

We will also build a CRON-based monitor – this is useful for send heartbeat events or any other workflows that must run periodically (e.g.
housekeeping type tasks like removing temporary files).

If necessary, we will also build an Email-Based monitor. Some archive systems send Email to notify when a file has been successfully archived or
an order is ready for pick-up.

CPF Data Servers

Like most systems, we will need databases or other types of repositories to store common system data. Note that the implementation of a data
server can change over time. We may start with "repositories" that are simply folders on a shared network drive. Later, these may be replaced
with databases or other open-source repositories that provide more features.

Workflow Server

Science Job Server

The science job server is a repository to store executables that run as part of CPF inter-calibration workflows.

Flat-file Repository

Initially, the simplest repository is a folder on a shared network drive mounted on all cluster nodes, along with a naming convention to help
organize multiple versions of jobs and their supporting files. We will use separate folders to distinguish jobs under test and those in production.
Every unique version of every job occupies its own folder. All jobs are started by a "go.sh" script in this folder, along with any other supporting
files:

/cpf_jobs/test/[job_name]/[job_version]/go.sh

/cpf_jobs/production/[job_name]/[job_version]/go.sh

Software Container Repository

The science job server may also be implemented as a software container repository using Docker. Software containers encapsulate the science
job and all of its system dependencies. The Univa Grid Engine is integrated with Docker and is able to run jobs as docker containers.

The use of docker containers has the following implications:

Once created, a science job "container" can run on any host, without having to first configure the host computer with required interpreters,
system libraries, etc. This makes it possible to run science jobs in the cloud, and to run science jobs that require a nonstandard
environment.
Containerized software is safer since it is not able to access host resources unless explicitly authorized. For example, it can't read or
modify host files or accept incoming network connections.

Access to local cache or network drives must be explicitly configured at container start.
Containers are ephemeral so any changes made inside the container itself (modified files, configuration changes, etc.) are gone when the
container exits

We will provide all containers with a folder where files that must persist after exit can be placed. This is where log files should be
written.

Docker also provides a docker "image" repository. An image is a disk file that can be used to start new running containers. Images are additive
and are created by starting with one version of a base image and then installing additional software or libraries. One possible design of CPF
docker images is shown here:

All images start with a large Ubuntu operating system image. Images build on the base OS by providing system support for the major types of
software environments we need to support: Java 1.8, Fortran 90, C++, Python 2.7, Matlab, etc. Note that these images are created and
maintained by third parties so it is unlikely we will want or need to create our own.

 Since Matlab is a licensed product the "Matlab" image links to Matlab installed on the host computer. Therefore any Matlab-based jobs
must run on a host where Matlab is already installed and licensed.

The next layer of images (CPF Java, CPF F90, etc.) adds common libraries that all CPF science jobs need. This is where the CPF Task Support
Library is installed. Since Docker images are versioned this allows the CPF image layer to evolve independently from the science job image layer.
For example, suppose the CPF Task Support Library for Java undergoes a major change from version 1.1 to version 2.0. Science jobs using old
version can list their base image as "CPF_Java:v1.1". Science jobs that are compatible with the new version can list their base image as
"CPF_Java:v2.0" or "CPF_Java:latest".

The final layer of images add the science jobs themselves. Of course these are also versioned, so workflows can reference
"VIIRS_spatial_convolution:v3.3" or "VIIRS_spatial_convolution:latest".

History Server

The history server is a common repository to store all actions taken by the CPF system. Ultimately, this includes a record incoming events and the
workflows that were executed in response. This provides traceability to know exactly what the system did, when, and with what data.

This server also stores detailed information like the logging output of individual science jobs. Centralized logging will make it easier to monitor
running workflows and diagnose problems.

CPF Task Support Library

	CPF Data Management System

